
WHY IS THIS STUFF SO SLOW?
Ruby and Rails “Performance”

RUBY IS SLOW

• At Garbage Collection

• When Creating Lots of Objects

• When Doing Stupid Stuff

• At a lot of other things...

HOW TO MAKE IT FASTER

• Don’t do things that are slow

• Use a faster Ruby implementation

• Do things later

• Don’t do stupid things

DON’T DO SLOW THINGS

• N+1 (or 2, or 3, or 20)

• In-memory data manipulations

• Things that create lots of or large objects

• Things that make external requests

FIXING N+1 (OR MORE)

• Bullet Gem (can be slow)

• DataMapper

• Load with :include

• Flatten Data

• Cache Things

BULLET

•https://github.com/flyerhzm/bullet

2009-08-25 20:40:17[INFO] N+1 Query: PATH_INFO: /posts; model: Post
=> associations: [comments]·

Add to your finder: :include => [:comments]
2009-08-25 20:40:17[INFO] N+1 Query: method call stack:·
/Users/richard/Downloads/test/app/views/posts/index.html.erb:11:in
`_run_erb_app47views47posts47index46html46erb'
/Users/richard/Downloads/test/app/views/posts/index.html.erb:8:in `each'
/Users/richard/Downloads/test/app/views/posts/index.html.erb:8:in
`_run_erb_app47views47posts47index46html46erb'
/Users/richard/Downloads/test/app/controllers/posts_controller.rb:7:in
`index'

https://github.com/flyerhzm/bullet
https://github.com/flyerhzm/bullet

DATAMAPPER

 1 zoos = Zoo.all

 2 zoos.each do |zoo|
 3 # on first iteration, DM loads up all of the exhibits for all of
the items in zoos
 4 # in 1 query to the data-store.
 5
 6 zoo.exhibits.each do |exhibit|
 7 # n+1 queries in other ORMs, not in DataMapper
 8 puts "Zoo: #{zoo.name}, Exhibit: #{exhibit.name}"
 9 end
10 end

http://datamapper.org/why

http://datamapper.org/why
http://datamapper.org/why

IN-MEMORY DATA
MANIPULATION

• Sort, Match, Group_by, etc

• Fine in small doses

• Create more objects for GC to clean up

• Use Bang methods or avoid when feasible

• Like when your Database can do the work

USE A FASTER RUBY

Ruby 1.9

DO STUFF LATER

• AJAX In complex (slow) data

• Do N+1 on request

• Use delayed_job, resque, etc to defer work

BENCHMARK THINGS
demo

WARNING!

• Don’t sacrifice your sanity for performance

• Stay away from really crazy performance tricks

• Keep Separation of Concerns

